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Abstract

A new type of ensemble Kalman filter is developed, which is based on replacing the
sample covariance in the analysis step by its diagonal in a spectral basis. It is proved
that this technique improves the aproximation of the covariance when the covariance
itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary5

random field and the Fourier basis. The method is extended by wavelets to the case
when the state variables are random fields which are not spatially homogeneous. Effi-
cient implementations by the fast Fourier transform (FFT) and discrete wavelet trans-
form (DWT) are presented for several types of observations, including high-dimensional
data given on a part of the domain, such as radar and satellite images. Computational10

experiments confirm that the method performs well on the Lorenz 96 problem and the
shallow water equations with very small ensembles and over multiple analysis cycles.

1 Introduction

Data assimilation consists of incorporating new data periodically into computations in
progress, which is of interest in many fields, including weather forecasting (e.g., Kalnay,15

2003; Lahoz et al., 2010). One data assimilation method is filtering (e.g., Anderson
and Moore, 1979), which is a sequential Bayesian estimation of the state at a given
time given the data received up to that time. The probability distribution of the sys-
tem state is advanced in time by a computational model, while the data is assimilated
by modifying the probability distribution of the state by an application the Bayes theo-20

rem, called analysis. In the methods considered here, data is assimilated in discrete
time steps, called analysis cycles, and the probability distributions are represented by
their mean and covariance (thus making a tacit assumption that they are at least close
to gaussian). When the state covariance is given externally, bayesian estimation be-
comes the classical optimal statistical interpolation (OSI). The Kalman filter (KF) uses25

the same computation as OSI in the analysis, but it evolves the covariance matrix
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of the state in time along with the model state. Since the covariance matrix can be
large, the KF is not suitable for high-dimensional systems. The ensemble Kalman fil-
ter (EnKF) (Evensen, 2009) replaces the state covariance by the sample covariance
computed from an ensemble of simulations, which represent the state probability dis-
tribution. It can be proved that the EnKF converges to the KF in the large ensemble5

limit (Kwiatkowski and Mandel, 2015; Le Gland et al., 2011; Mandel et al., 2011) in
the gaussian case, but an acceptable approximation may require hundreds of ensem-
ble members (Evensen, 2009), because of spurious long-distance correlations in the
sample covariance due to its low rank. Localization techniques (e.g., Anderson, 2001;
Furrer and Bengtsson, 2007; Hunt et al., 2007), essentially suppress long-distance10

covariance terms (Sakov and Bertino, 2011), which improves EnKF performance for
small ensembles.

FFT EnKF (Mandel et al., 2010a, b) was proposed as an alternative approach to lo-
calization, based on replacing the sample covariance in the EnKF by its diagonal in the
Fourier space. This approach is motivated by the fact that a random field in cartesian15

geometry is second order stationary (that is, the covariance between the values at two
points depends only on their distance vector) if and only if its covariance in the Fourier
space is diagonal (e.g., Pannekoucke et al., 2007). On a sphere, an isotropic random
field has diagonal covariance in the basis of spherical harmonics (Boer, 1983), so sim-
ilar algorithms can be developed there as well. However, the stationarity assumption20

does not allow the covariance to vary spatially. For this reason, the FFT EnKF was
extended to wavelet EnKF (Beezley et al., 2011). The use of wavelets results in an
automatic localization, which varies in space adaptively. For wavelets, the effect of the
diagonal spectral approximation is equivalent to a weighted spatial averaging of lo-
cal covariance functions (Pannekoucke et al., 2007). Diagonal matrices are cheap to25

manipulate computationally, but implementing the multivariate case and general obser-
vation functions is not straighthforward.

Diagonal spectral approximation and, more generally, sparse spectral approxima-
tion, have been used as a statistical model for the background covariance in data as-
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similation in meteorology for some time. The optimal statistical interpolation system
from Parrish and Derber (1992) was based on a diagonal approximation in spherical
harmonics, already used as horizontal basis functions in the model, and a change of
state variables into physically balanced analysis variables. The ECMWF 3DVAR system
(Courtier et al., 1998) also used diagonal covariance in spherical harmonics. Diagonal5

approximation in the Fourier space for homogeneous 2-D error fields, with physically
balanced crosscovariances, was proposed in Berre (2000). The Fourier diagonaliza-
tion approach was extended by Pannekoucke et al. (2007) to sparse representation of
the background covariance by thresholding wavelet coefficients, and into a combined
spatial and spectral localization by Buehner and Charron (2007).10

While modeling of background covariances typically uses multiple sources includ-
ing historical data, the EnKF builds the covariance in every analysis cycle from the
ensemble itself. In this paper, we prove that replacing the sample covariance by its
spectral diagonal improves the approximation when the covariance itself is diagonal in
the spectral space, as is the case, e.g., when the state is a second order stationary15

random field and a Fourier basis is used. The result, however, is general and it applies
to an arbitrary orthogonal basis, including wavelets. We also develop computationally
efficient spectral EnKF algorithms, which take advantage of the diagonal form of the
covariance, in the multivariate case and for several important classes of observations.
We demonstrate the methods on computational examples with the Lorenz 96 system20

and shallow water equations, which show that good performance can be achieved with
very small ensembles.

2 Notation

Vectors in Rn or Cn are typeset as u and understood to be columns. Random vectors
are typeset as X. The entry i of X is denoted by (X)i . Matrices (random or determin-25

istic) are typeset as A, and and A∗ is the transpose, or conjugate transpose in the
complex case. The entry i , j of matrix A is denoted by (A)i ,j or ai ,j , and A = [a1, . . .,an]
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is the writing of a matrix as a collection of columns. Nonlinear operators are typeset as
M. The mean value is denoted by E[·], and Var is the variance. N (0,1) is the normal
(gaussian) distribution with zero mean and unit variance, and N (m,C) is the multivari-
ate normal distribution with meanm and covariance C. The Euclidean norm of a vector

is ‖u‖ =
(∑n

i=1|ui |
2
)1/2

. The Frobenius norm of a matrix is ‖ A‖F =
(∑m

i=1

∑n
j=1|ai ,j |

2
)1/2

.5

3 Kalman filter and ensemble Kalman filter

The state of the system at time t is described by a random vector Xt of length n. The
system evolution between two times t1 and t2 is given by a functionM(.,t1,t2), so that

X
f
t2
=M(Xa

t1
,t1,t2). (1)

The goal of the Kalman filter (KF) (Kalman, 1960) is to correct the forecast state of10

the system X
f
t to obtain the analysis estimate Xa

t of the true state Xt, given noisy
observations Y t = HtXt+εt, where Ht is an observation operator, i.e., a mapping from
state space to a data space, and εt ∼ N (0,Rt). When the distributions of the state Xt
and the data error are gaussian, the analysis satisfies

X
a
t = X

f
t −CtH

∗
t

(
HtCtH

∗
t +Rt

)−1
(

HtX
f
t −Y t

)
, (2)15

where Ct is the covariance of the forecast Xf
t. In the KF, the state is represented by

its mean and covariance, and the mean is transformed also by Eqs. (1) and (2). In the
rest of the paper, we will drop the time index t and the superscript f, unless there is
a danger of confusion.

In the EnKF, the analysis formulas (Eqs. 1 and 2) are applied to each ensemble20

member, with the covariance replaced by the sample covariance from the ensemble.
The resulting ensemble, however, would underestimate the analysis covariance, which
is corrected by a data perturbation by sampling from the data error distribution (Burgers
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et al., 1998). Denote by X1, . . .,XN the forecast ensemble, created either by a pertur-
bation of a background state or by evolving each analysis ensemble member from the
previous time step independently by Eq. (1). Then, the analysis ensemble members
are

X
a,j = Xj −CNH∗

(
HCNH∗ +R

)−1(
HXj −Y j

)
, (3)5

where the sample covariance matrix is

CN =
1

N −1

N∑
j=1

(
X
j −X

)(
X
j −X

)∗
, X =

1
N

N∑
j=1

X
j (4)

and Y j = Y + τj are the perturbed observations, with τj ∼ N (0,R) independent.
The advantage of the EnKF update formula (Eq. 2) is that it can be implemented

efficiently without having acces to the whole sample covariance matrix CN . On the10

other hand, the rank of matrix CN is at most N−1, and, in the usual case when N� n,
the low rank of the approximation CN of the true forecast covariance C is the biggest
drawback of the EnKF.

4 Spectral diagonal EnKF

Let F be an orthonormal transformation matrix, which transform each ensemble mem-15

ber to spectral space, and denote each transformed ensemble member by the ad-
ditional subscript F, XjF = FXj , j = 1, . . .,N. Since the transformation is orthonormal,

the inverse transformation is F∗, so F∗XjF = X
j for each j = 1, . . .,N. The columns

of the inverse transform matrix F∗ are the spectral basis elements u1, . . .,un, i.e.,
F = [u1, . . .,un]

∗. We will also denote the sample covariance of the transformed en-20
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semble with the additional subscript F,

CNF =
1

N −1

N∑
j=1

(
X
j
F −XF

)(
X
j
F −XF

)∗
= FCNF∗, XF =

1
N

N∑
j=1

X
j
F. (5)

The idea of the spectral diagonal Kalman filter is to replace the sample covariance
in the update formula (Eq. 3) by only the diagonal elements of sample covariance in
spectral space,5

DNF = CNF ◦ I =


c1,1 0 · · · 0

0 c2,2
...

...
. . . 0

0 · · · 0 cn,n

 , ci ,i =
1

N −1

N∑
j=1

∣∣∣(XjF)i − (XF
)
i

∣∣∣2
. (6)

where ◦ stands for Schur product, i.e., element-wise multiplication. The entries ci ,i are

the sample variances, computed without forming the whole matrix CNF . The diagonal
approximation is transformed back to physical space as

DN = F∗DNF F, (7)10

and the proposed analysis update is then

X
a,j = Xj −DNH

(
HDNH∗ +R

)−1(
HXj −Y j

)
. (8)

5 Error analysis

We will now compare the expected errors of the sample covariance and its spectral di-

agonal approximation (Eq. 5). Assume that the ensemble members X i ∼ N
(
X,C

)
are15
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independent, and the columns of the inverse spectral transformation F∗ are eigenvec-
tors ui of the covariance C with the corresponding eigenvalues λi ,

F = [u1, . . .,un]
∗,Cui = λiui ,FF∗ = I. (9)

Equivalently, in the basis {u1, . . .,un}, the covariance FCF∗ of FX i is diagonal, with the
diagonal elements λi . This is the situation, e.g., when X i are sampled from a second-5

order stationary random field on a rectangular mesh, and ui is the Fourier basis. In
the EnKF, the ensemble members after the first analysis cycle are not independent,
because the sample covariance in the analysis step ties them together, but they con-
verge to independent random vectors as the ensemble size N→∞ (Le Gland et al.,
2011; Mandel et al., 2011). The following theorem shows that the spectral diagonal10

approximation has smaller expected error than the sample covariance, in Frobenius
norm.

Theorem I (Error of the spectral diagonal approximation)

Let Xk ∼ N
(
X,C

)
, k = 1, . . .,N, be independent, and the transformation F satisfy

(Eq. 9). Then, the expected squared errors in the Frobenius norm of the sample covari-15

ance CN (Eq. 4) and its spectral diagonal approximation DN (Eq. 7) are

E
[
‖C−CN‖2F

]
=

2
N −1

n∑
i=1

λ2
i +

1
N −1

n∑
i ,j=1
i 6=j

λiλj , (10)

E
[
‖C−DN‖2F

]
=

2
N −1

n∑
i=1

λ2
i . (11)

Proof. Without loss of generality, assume that X = 0. The Frobenius norm of
a square matrix A = [a1, . . .,an] is unitarily invariant, ‖FAF∗‖2F = ‖A‖

2
F, because ‖FA‖2F =20

122

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/115/2015/npgd-2-115-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/115/2015/npgd-2-115-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 115–143, 2015

Spectral diagonal
ensemble Kalman

filters

I. Kasanický et al.
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n∑
i=1

‖Fai‖
2 =

n∑
i=1

‖ai‖
2 = ‖A‖2F = ‖A

∗‖2F. Thus,

E
[
‖C−CN‖2F

]
= E
[
‖CF −CNF ‖

2
F

]
=

n∑
i ,j=1

E
[∣∣∣(CF)i ,j − (CNF )i ,j

∣∣∣2
]
=

n∑
i ,j=1

Var
[(

CNF

)
i ,j

]
,

because the sample covariance is unbiased, E
[(

CNF
)
i ,j

]
= (CF)i ,j . Lemma 4 in the

Appendix now gives Eq. (10). To prove Eq. (11), we consider the diagonal entries in
the spectral domain,5

E
[
‖C−DN‖2F

]
= E
[∥∥∥CF −DNF

∥∥∥2

F

]
=

N∑
i=1

E

[∣∣∣∣(CF)i ,i −
(

CNF

)
i ,i

∣∣∣∣2
]
=

n∑
i=1

Var
[
(CNF )i ,i

]
,

and use Lemma 4 again. �
Since the eigenvalues of covariance are always nonnegative, we have λiλj ≥ 0,

therefore the spectral diagonal covariance decreases the expected squared error of
sample covariance:10

E
[
‖C−DN‖2F

]
≤ E
[
‖C−CN‖2F

]
,

with equality only if all λiλj = 0, i 6= j , that is, only in the degenerate case when the
exact covariance C has rank at most one. To compare the error terms further, note
that

(∑n
i=1λi

)2
=
∑n
i ,j=1λiλj =

∑n
i ,j=1,i 6=jλiλj +

∑n
i=1λ

2
i , which shows that the error of the

sample covariance depends on the `1 norm of the eigenvalues sequence,15

E
[
‖C−CN‖2F

]
=

1
N −1

 n∑
k=1

λ2
k +

(
n∑
k=1

λk

)2
 =

1
N −1

(∥∥{λk}nk=1

∥∥2
`2 +

∥∥{λk}nk=1

∥∥2
`1

)
,
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while the error of the spectral diagonal approximation depends only on the `2 norm,

E
[
‖C−DN‖2F

]
=

2
N −1

∥∥{λk}nk=1

∥∥2
`2 ,

which is weaker as the state dimension n→∞. The improvement depends on the
rate of decay of the eigenvalues as the index k→∞. Note that the eigenvalues of the
covariance (if it exists) of a random element in an infinitely dimensional Hilbert space5

must satisfy the trace condition
∑∞
k=1λk <∞, (e.g., Da Prato, 2006). The eigenvalues

of the covariance in many physical systems obey a power law, λk ≈ k
−α with α > 1,

(e.g., Gaspari and Cohn, 1999). Suppose that λk = ck
−α and n→∞. Then,

∥∥{λk}nk=1

∥∥2
`2 →

∞∑
k=1

k−2α ≈
∞∫
1

x−2αdx =
1

2α−1
,

∥∥{λk}nk=1

∥∥2
`1 →

∞∑
k=1

k−α ≈
∞∫
1

x−αdx =
1

α−1
,10

which gives the error ratio E
[
‖C−DN‖2F

]
/E
[
‖C−CN‖2F

]
→ 0 as α→ 1+. Other consid-

erations of similar ratios can be found in Furrer and Bengtsson (2007). Theorem 1 is
related to but different from the estimate in Furrer and Bengtsson (2007, Eq. 12), which
applies to the case when the mean known exactly rather than the sample covariance
here. Also, the analysis in Furrer and Bengtsson (2007) is in the physical domain rather15

than in the spectral domain.

6 Spectral EnKF algorithms

We will show that the analysis step can be implemented very efficiently in cases of
practical interest. We drop the ensemble members index in all update formulas to make
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them more readable. Note that when using all the following formulas, it is necessary to
perturb the observations.

6.1 State consisting of only one variable, completely observed

Assume that the state consists of one variable, e.g., X ∈Rn, and that we can observe
the whole system state, i.e., the observation function is the identity, H = I, and obser-5

vations are Y ∈Rn. Assume also that the observation noise covariance matrix is cI,
where c > 0 is a constant. In this special case, we can do the whole update in the
spectral space, since it is possible to transform the innovation to the spectral space,
and the analysis step (Eq. 8) becomes

X
a = X −F∗DNF

(
DNF +cI

)−1
F (X −Y ) .10

Note that the matrices DNF and DNF +cI are diagonal, so any operation with them, such
as inversion or multiplication, is very cheap. The matrix F is never formed explicitly.
Rather, the multiplications of F and F∗ times a vector are implemented by the fast
Fourier transform (FFT) or discrete wavelet transform (DWT). This is the base case of
the FFT EnKF (Mandel et al., 2010a, b) and the wavelet EnKF (Beezley et al., 2011),15

respectively.

6.2 Multiple variables on the same grid, one variable completely observed

In a typical model, such as numerical weather prediction, the state consist usually of
more than one variable. Assume the state consist of m different variables all based on
the same grid of length n. Then each variable can be transformed to the spectral space20

independently, and we have the state vector X ∈Rn·m and the transformation matrix in
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the block form

X =


X1
X2
...
Xm

 , F =


F̃ 0 · · · 0

0 F̃
...

...
. . . 0

0 · · · 0 F̃

 , (12)

where each block X1 is a vector of length n and F̃ is n by n transformation matrix.
Assume also that the whole state of the first variable X1 is observed, and again the

covariance of observation error is cI. In this case, the observation operator is one by5

m block matrix of the form H = [I 0 · · · 0]. In the proposed method, we approximate the
crosscovariancess between the variables also by the diagonal of the sample covari-

ance in spectral space, DNF =
[
DNi ,j
]m
i ,j=1

, where Di ,j is matrix containing only diagonal

elements from the sample covariance matrix between transformed variables F̃X i and
F̃Xj . With this notation, the analysis step (Eq. 8) becomes10

X
a =

X
a
1

...
X

a
m

 =

X1
...
Xm

−
 F̃∗DN1,1

...
F̃∗DNm,1

(DN1,1 +cI
)−1

F̃ (X1 −Y ) . (13)

Note that again the matrix to be inverted is diagonal and full-rank, and the transforma-
tion F̃ is implemented by call to FFT or DWT, so the operations are computationally
very efficient. A related method using interpolation and projection was proposed for
the case when the model variables are defined on non-matching grids (Beezley et al.,15

2011).
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6.3 Multiple variables on the same grid, one variable observed at a small num-
ber of points

This situation occurs, e.g., when assimilated observations are from discrete stations.
In this case, the observation matrix is H = [H1 0 · · · 0], where H1 has a small number of
rows, one for each data points, and X and F are the same as in Eq. (12). We substitute5

the diagonal spectral approximation into the analysis step (Eq. 8) directly, and Eq. (13)
becomes

X
a =

X1
...
Xm

−
 F̃∗DN1,1

...
F̃∗DNm,1

 F̃
(

H1F̃∗DN1,1F̃H∗1 +R
)−1

F̃ (X1 −Y ) . (14)

The solution of a system of linear equations with the matrix H1F̃∗DN1,1F̃H∗1 +R in
Eq. (14) does not present a problem, because its dimension is small by assumption,10

and F̃H∗1 is easy to compute explicitly by the action of FFT on the columns of H∗1. Note
that in this case, the data noise covariance R may be arbitrary.

6.4 State consisting of more variables, one partly observed

Consider the situation when the number of observation points is too large for the
method of Sect. 6.3 to be feasible, but only one variable on a contiguous part of the15

mesh is observed. The typical example of this type may be radar images, which cover
typically only a part of domain of the numerical weather prediction model.

Suppose that observations (Y )j of the values of the first variable (X1)j are avail-
able only for a subset of indices j ∈M ⊂ {1, . . .,n}. Augment the forecast state by
an additional variable X0. For j = 1, . . .,n, set (X0)j = (X1)j if j ∈M, (X0)j = (Y )j = 020

if j 6∈M. We can now use the analysis update (Eq. 13) with the augmented state
X̃ = (X0,X1, . . .,Xm) and observation Ỹ = (Y ,0, . . .,0), to get the augmented analysis

X̃
a
=
(
X

a
0,Xa

1, . . .,Xa
m
)
, and drop Xa

0.
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Note that the innovations to the original variables are propagated through the spec-
tral diagonal approximation of cross covariance between the original and augmented
variables. Since this covariance is not spatially homogeneous, a Fourier basis will not
be appropriate, and computational experiments in Sect. 7 confirm that wavelets indeed
perform better.5

7 Computational experiments

In all experiments, we use the usual twin experiment approach. A run of the model
from one set of initial conditions is used to generate a sequence of states, which plays
the role of truth. Data values were obtained by applying the observation operator to the
truth; the data perturbation was done only for ensemble members within the assimila-10

tion algorithm. A second set of initial conditions is used for data assimilation and for
a free run, with no data assimilation, for comparison. The error of the free run should
be an upper bound on the error of a reasonable data assimilation method.

We evaluate the filter by the root mean square error, RMSE =(
1
n

∑n
i=1

∣∣∣(X)i −
(
X

a)
i

∣∣∣2
)1/2

, where X
a

is the analysis ensemble mean, X is the15

true state, and n is the number of the grid points xi . In the case when the state consist
of more than one variable, such as in the shallow water equations, we evaluate the
error of each variable independently. While the purpose of a single analysis step is to
balance the uncertainties of the state and the data rather than minimalize the RMSE,
the RMSE values over multiple time steps are used to evaluate how well the data20

assimilation fulfills its overall purpose to track the truth.
We evaluate the RMSE of the the standard EnKF, marked as EnKF in the legend of

the figures, and the spectral diagonal EnKF with the discrete sine transform, discrete
cosine transform, and the Coiflet 2,4 discrete wavelet transform (Daubechies, 1992),
marked as DST, DCT, and DWT, respectively.25
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7.1 Lorenz 96

In the Lorenz 96 model (Lorenz, 2006), the state consists of one variable Xt ∈R
K ,

Xt = (x1, . . .,xK ), governed by the differential equations

dxj
dt

= xj−1xj+1 −xj−1xj−2 −xj + F , j = 1, . . .,K ,

where the values of xj−K and xj+K are defined to be equal to xj for each j = 1, . . .,K ,5

and F is a parameter. We set the parameter F = 8, which causes the system to be
strongly chaotic. The timestep of model was set to 0.01s and the analysis cycle was 1s.
The data covariance was diagonal, with diagonal entries equal to 0.04. The ensemble
and the initial conditions for the truth were generated by sampling from N(0.0005,0.01).
The ensemble and the truth were moved forward for 10 s, then the assimilation starts.10

In the case when the whole state is observed, spectral filters with ensemble size
N = 4 (Fig. 1a) already decrease the error significantly compared to a run with no as-
similation, while the standard EnKF actually increases the error. For all filters, the error

eventually decreases with the ensemble size at the standard rate N−1/2, but spectral
EnKF shows the error decrease from the start, while the EnKF lags until the ensem-15

ble size is comparable to the state dimension, and even then its RMSE is significantly
higher (Fig. 1b).

Next, consider the case when only the first m points of a grid are observed. In the
legend, DCT-S and DWT-S are the method with the discrete cosine transform, and the
Coiflet 2,4 discrete wavelet transform, respectively, with the standard analysis update20

(Eq. 8), while DCT-A and DWT- A use the augmented state method from Sect. 6.4.
Figure 2 shows that the spectral diagonal method decrease the RMSE, while the stan-
dard EnKF is unstable. This observation is consistent with the result of Kelly et al.
(2014), which shows that, for a class of dynamical systems, the EnKF remains within
a bounded distance of truth if sufficiently large covariance inflation is used and if the25

whole state is observed. The augmented state method DWT-A with wavelet transfor-
mation gave almost the same analysis error as DCT-S, which is using the spectral
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diagonal filter with the exact observation matrix, while the cosine basis, which implies
a homogenenous random field, resulted in a much larger error (method DCT-A). A sim-
ilar behavior was seen with a smaller number of observed points as well, but the error
reduction in spectral diagonal EnKF was smaller (not shown).

7.2 Shallow water equations5

The shallow water equations can serve as a simplified model of atmospheric flow. The
state Y = (h,u,v) consists of water level height h and momentum u,v in x and y direc-
tions, governed by the differential equations of conservation of mass and momentum,

∂h
∂t

+
∂(uh)

∂x
+
∂(vh)

∂y
= 0,

∂(hu)

∂t
+
∂
∂x

(
hu2 +

1
2
gh2
)
+
∂(huv)

∂y
= 0,10

∂(hv)

∂t
+
∂(huv)

∂x
+
∂
∂y

(
hv2 +

1
2
gh2
)
= 0,

where g is gravity acceleration, with reflective boundary conditions, and without Coriolis
force or viscosity. The equations were discretized on a rectangular grid size 64×64 with
horizontal distance between grid points 150km and advanced by the Lax–Wendroff
method with the time step 1s. The initial values where water level h = 10km, plus15

Gaussian water raise of height 1km, width 32 nodes, in the center of the domain, and
u = v = 0. See Moler (2011, Chapter 18) for details.

We have used two independent initial conditions, one used for the truth and another
for the ensemble and the free run. The only difference was the location of the initial
wave. Both states were moved forward for 4 h. Then the ensemble was created by20

adding random noise (with prescribed background covariance). Then, all states were
moved forward for another hour, and assimilation starts 5h after the model initialization.
All assimilation methods start with the same forecast in the first assimilation cycle.
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The background covariance for initial ensemble perturbation was estimated using
samples taken every second from time tstart = 4h to time tend = 6h, and modified by
tapering the sample covariance matrix CN as B = CN ◦T, where the tapering matrix T
had the block structure

T =

A 0 0
0 A 0
0 0 A

+0.9

0 A A
A 0 A
A A 0

 ,5

where the entry between nodes (ia, ja) and (ib, jb) is (A)a,b = exp(−|ia−ib|)exp(−|ja−jb|).
2-D tensor product FFT and DWT were used in the diagonal spectral EnKF. The obser-
vation error was taken with zero mean and variance 1000m2 in h and 1000kgms−1 in
u and v . The forecast ensemble was created by adding random noise with the covari-
ance B 4h after the model initialization. To relax the ensemble members, the model10

was run for another hour before the assimilation started. So the first assimilation was
performed 5 h after the model initialization. After the first assimilation, another 4 assim-
ilation cycles were performed every 60s.

When the full state is observed, the spectral diagonal method decreased the RMSE
in all variables dramatically (Fig. 3), unlike the standard EnKF. When only the water15

level is observed, the RMSE in spectral diagonal EnKF decreases less, but still much
more that in the standard EnKF (Fig. 4).

8 Conclusions

A version of the ensemble Kalman filter was presented, based on replacing the sam-
ple covariance by its diagonal in the spectral space, which provides a simple, effi-20

cient, and automatic localization. We have demonstrated efficient implementations for
several classes of observation operators and data important in applications, including
high-dimensional data defined on a continuous part of the domain, such as radar or
satellite images. The spectral diagonal was proved rigorously to give a lower mean
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square error that the sample covariance. Computational experiments with the Lorenz
96 problem and the shallow water equations have shown that the analysis error drops
very fast for small ensembles, and the method is stable over multiple analysis cycles.
The paper provides a new technology for data assimilation, which can work with min-
imal computational resources, because an implementation needs only an orthogonal5

transformation, such as the fast Fourier or discrete wavelet transform, and manipulation
of vectors and diagonal matrices. Therefore, it should be of interest in applications.

Appendix A: Properties of sample covariance matrix

Let Uk ∼ N (0,C) be independent random vectors in Rn or Cn. For each Uk , we have
the Karhunen–Loève decomposition10

U
k =

n∑
j=1

λ1/2
j θj ,kuj ,θj ,k ∼ N(0,1) independent, (A1)

where λj ≥ 0 are the eigenvalues and uj orthonormal eigenvectors of the covariance
matrix C. Let F = [u1, . . .,un]

∗. By a direct computation, we have in the basis of the
eigenvectors:

Lemma 2 The random vector UkF = FUk ∼ N (0,CF), where CF = FCF∗ is a diagonal15

matrix with λ1, . . .,λn on the diagonal.
Next, we use Eq. (A1) to compute an expansion of the sample covariance entries.
Lemma 3 Let CNF be the sample covariance of U1

F, . . .,UNF , cf., (Eq. 5). Then,

(
CNF

)
i ,j
=

(
λiλj
)1/2

N −1

(
N∑
k=1

θi ,kθj ,k −
1
N

N∑
l=1

θi ,l

N∑
m=1

θj ,m

)
. (A2)
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Proof. From the definition of the sample covariance,(
CNF

)
i .j
=

1
N −1

N∑
k=1

(
U
k
F −UF

)
i

(
U
k
F −UF

)∗
j

=
1

N −1

N∑
k=1

(
U
k
F −

1
N

N∑
l=1

U
l
F

)
i

(
U
k
F −

1
N

N∑
m=1

U
m
F

)∗
j

=
1

N −1

(
N∑
k=1

(
U
k
F

)
i

(
U
k∗
F

)
j
− 1
N

N∑
l=1

(
U
k
F

)
l

N∑
m=1

(
U
l
F

)
m

)

=

(
λiλj
)1/2

N −1

(
N∑
k=1

θi ,kθj ,k −
1
N

N∑
l=1

θi ,l

N∑
m=1

θj ,m

)
. �5

Finally, we use the expansion (Eq. A2) to derive the variance of the sample covari-
ance entries.

Lemma 4 The variance of each entry of CNF is

Var
[(

CNF

)
i ,j

]
=


2λ2
i

N−1 if i = j ,
λiλj
N−1 if i 6= j .

Proof. The sample covariance is unbiased estimate of the true covariance, so from10

Lemma 3,

Var
[(

CNF

)
i ,i

]
= E

[∣∣∣∣(CNF )i ,i −E
[(

CNF

)
i ,i

]∣∣∣∣2
]
= E

[∣∣∣∣(CNF )i ,i − (CF)i ,i

∣∣∣∣2
]

= E


 (λiλi )

1/2

N −1

 N∑
k=1

θ2
i ,k −

1
N

N∑
k,l=1

(
θi ,kθi ,l

)− λi
2

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=
λ2
i

(N −1)2
E

( N∑
k=1

θ2
i ,k

)2− 2λ2
i

N(N −1)2
E

 N∑
k,l ,m=1

θ2
i ,kθi ,lθi ,m


+

λ2
i

N2(N −1)2
E


 N∑
k,l=1

θi ,kθi ,l

2
− 2λ2

i

(N −1)
E

[
N∑
k=1

θ2
i ,k

]

+
2λ2

i

N (N −1)
E

 N∑
k,l=1

θi ,kθi ,l

+ λ2
i . (A3)

The random variables θi ,k are i.i.d., so it follows that

E
[
θi ,kθi ,lθi ,mθi ,n

]
=



3 if k = l =m = n,

1 if k = l ,m = n,k 6=m,

1 if k =m, l = n,k 6= l ,
1 if k = n, l =m,k 6= l ,
0 otherwise,

5

and we can compute all the expected values in Eq. (A3),

E

( N∑
k=1

θ2
i ,k

)2 =
N∑
k=1

E
[
θ4
i ,k

]
+

N∑
k=1

N∑
l=1,l 6=k

E
[
θ2
i ,lθ

2
i ,k

]
= 3N +N(N −1) = N(N +2),

E

 N∑
k,l ,m=1

θ2
i ,kθi ,lθi ,m

 =
N∑
k=1

E
[
θ4
i ,k

]
+

N∑
k,l=1,l 6=k

E
[
θ2
i ,kθ

2
i ,l

]
= 3N +N(N −1) = N(N +2),
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E


 N∑
k,l=1

θi ,kθi ,l

2
 =

N∑
k,l ,m,n=1

E
[
θi ,kθi ,lθi ,mθi ,n

]

=
N∑
k=1

E
[
θ4
i ,k

]
+3

N∑
k,l=1,l 6=k

E
[
θ2
i ,kθ

2
i ,l

]
= 3N2,

E

[
N∑
k=1

θ2
i ,k

]
=

N∑
k=1

E
[
θ2
i ,k

]
= N,5

E

 N∑
k,l=1

θi ,kθi ,l

 =
N∑
k=1

E
[
θ2
i ,k

]
= N.

Together, we get

Var
[(

CNF

)
i ,i

]
= λ2

i

(
N(N +2)

(N −1)2
−

2(N +2)

(N −1)2
+

3

(N −1)2
− 2N
N −1

+
2

N −1
+1
)
=

2λ2
i

N −1
.

The variance of the off-diagonal entry
(

CNF
)
i ,j

, i 6= j , is

Var
[(

CNF

)
i ,j

]
= E

[∣∣∣∣(CNF )i ,j −E
[(

CNF

)
i ,j

]∣∣∣∣2
]
= E

[∣∣∣∣(CNF )i ,j − (CF)i ,j

∣∣∣∣2
]

10

= E


(λiλj)1/2

N −1

 N∑
k=1

θi ,kθj ,k −
1
N

N∑
k,l=1

(
θi ,kθj ,l

)−0

2

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=
λiλj

(N −1)2
E

( N∑
k=1

θi ,kθj ,k

)2− 2λiλj

N(N −1)2
E

 N∑
k,l ,m=1

θi ,kθj ,kθi ,lθj ,m


+

λiλj

N2(N −1)2
E


 N∑
k,l=1

θi ,kθj ,l

2
 . (A4)

The integrals in Eq. (A4) are

E

( N∑
k=1

θi ,kθj ,k

)2 =
N∑

k,l=1

E
[
θi ,kθj ,kθi ,lθj ,l

]
=

N∑
k,l=1

E
[
θi ,kθi ,l

]
E
[
θj ,kθj ,l

]
=

N∑
k=1

E
[
θi ,kθi ,k

]
E
[
θj ,kθj ,l

]
= N,5

E

 N∑
k,l ,m=1

θi ,kθj ,kθi ,lθj ,m

 =
N∑

k,l ,m=1

E
[
θi ,kθi ,l

]
E
[
θj ,kθj ,m

]
=

N∑
k=1

E
[
θi ,kθi ,k

]
E
[
θj ,kθj ,k

]
= N,

E


 N∑
k,l=1

θi ,kθj ,l

2
 = E


 N∑
k=1

θi ,k

N∑
k,l=1

θj ,l

2
10

= E

( N∑
k=1

θi ,k

)2E

( N∑
l=1

θj ,l

)2 = N2.
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So, the variance of an off-diagonal element is

Var
[(

CNF

)
i ,j

]
=

λiλj
(N −1)2

(N −2+1) =
λiλj
N −1
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Figure 1. Mean RMSE from 10 realizations for Lorenz 96 problem, the whole state observed,
(a) increasing analysis cycles with ensemble size 4, state dimension 256, (b) increasing en-
semble size, analysis cycle 1, state dimension 64.
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Figure 2. Mean RMSE from 10 realizations for the Lorenz 96 problem, ensemble size 16, state
dimension 256. (a) first 128 points observed, (b) first 64 points observed.
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Figure 3. RMSE of ensemble mean of one realization of three assimilation cycles. Full state
was observed. The length of assimilation cycle 60 s, ensemble size 20. (a) water height (b)
momentum in the x direction (c) momentum in the y direction.
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Figure 4. Mean RMSE of ensemble mean from 5 independent repetitions. Ensemble size 20,
only water height observed. (a) water height (b) momentum in the x direction (c) momentum in
the y direction.
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